Innate immunity: Sensing pathogens and danger

Abul K. Abbas, MD University of California San Francisco

FOCIS

Lecture outline

- · Components of innate immunity
- Recognition of microbes and cell damage/stress
 - Toll Like Receptors
 - NOD Like Receptors/Inflammasome
- Role of innate immunity in inflammatory diseases

Innate Immune Responses

- · The initial responses to:
 - 1. Microbes: essential early mechanisms to prevent, control, or eliminate infection;
 - 2. Injured tissues, dead cells: critical for repair and wound healing
- · Limited types of defensive reactions:
 - Inflammation
 - Antiviral state

- Stimulate adaptive immunity
 - Innate immunity provides "danger signals"

General features of innate immunity

- Phylogenetically ancient (evolved before adaptive immunity)
- Functional even before exposure to microbes (no prior immunization needed)
- Resets to baseline (no or limited memory)

Components of the Innate Immune System 1. Cells

Epithelial barriers

- Mechanical barrier
- Locally produced antibiotics

Sentinels

Dendritic cells

Phagocytes

- Macrophages
- Neutrophils

Specialized lymphocytes

Innate lymphoid cells: Cytokine producers

Development of macrophages: the accepted view

Two pathways of macrophage development

During inflammatory reactions

Tissue-resident macrophages

Innate lymphoid cells

ILCs make many of the same cytokines as T cells but lack TCRs (detected in RAG-/- mice)

Innate lymphoid cells

- ILCs respond not to antigens but to cytokines made by epithelial and other cells in response to cellular stress
- Difficult to study in humans; difficult to assess their contribution to immune responses even in normal mice

Components of the Innate Immune System 2. Plasma proteins

- Complement
 - Multiple functions
- Pentraxins: coat microbes for phagocytosis
 - C Reactive Protein, serum amyloid protein
- Collectins
 - Mannose Binding Lectin (activator of complement)

Innate Immune System: What is recognized?

- Structures that are shared by various classes of microbes but are not present on host cells - Pathogen associated molecular patterns (PAMPs).
 - Innate immunity often targets microbial molecules that are essential for survival or infectivity of microbes (prevents escape mutants)

 Structures produced in damaged or necrotic host cells - Damage associated molecular patterns (DAMPs).

Cellular Pattern Recognition Receptors

Specificity of Receptors of Innate and Adaptive Immunity

	INNATE	ADAPTIVE
Specificity: # of molecules recognized	~1,000	>10 ⁷
Types of receptors	<100 types, each invariant	2 types (Ig, TCR), millions of variations of each
Distribution of receptors	Non-clonal	Clonal

Toll-like Receptors (TLRs): specificity

Toll-like Receptors (TLRs): signaling

Genetic evidence for the importance of TLRs

 Mutations in signaling adaptor protein MyD88 (for all TLRs except TLR3): invasive bacterial infections, mainly pneumonia

 Mutations affecting TLR3 and signaling molecules: herpes virus encephalitis

NOD-like receptors (NLRs)

· A family of >20 cytosolic proteins, best known:

- NOD1 and NOD2
 - Bind bacterial peptides
 - Activate NF-kB and trigger inflammation

NLRPs

- NLRs that contain "pyrin" domains
- Sense diverse DAMPs and PAMPs
- Form signaling complex called the inflammasome, which leads to the production of IL-1 and inflammation

NOD = nucelotide oligomerization domain

Activation of inflammasome by microbial products and/or host-derived molecules

Signaling involves prionlike propagation of adaptor protein (ASC), forming filaments

Physiologic functions of the inflammasome

- To sense and eliminate necrotic cells (caused by microbes, other insults) and foreign bodies
 - Reactions: Inflammation
- Gain of function mutations in components of inflammasomes are the cause of rare inherited "auto-inflammatory" syndromes characterized by periodic fever, skin rashes, and amyloidosis
 - Therapy for these disorders?

Inflammasome activation in common inflammatory diseases

- Gout, pseudogout: Deposition of crystals (e.g. urate) → IL-1-mediated acute inflammation
- Obesity-associated metabolic syndrome:
 Deposition of lipids and free fatty acids → IL-1 production → insulin resistance → type 2 diabetes?
- Deposition of cholesterol crystals

 role of inflammation in atherosclerosis?
- Reaction to abnormal protein deposits: Alzheimer disease? Other disorders?

The innate immune system provides second signals required for lymphocyte activation

Second signals for T cells: "costimulators" induced on APCs by microbial products, during early innate response

Second signals for B cells: products of complement activation recognized by B cell complement receptors

Role of innate immunity in autoimmune diseases

- Innate immune reactions to microbes or damaged host cells may initiate adaptive responses to self antigens
 - Role of type I IFN in SLE?
- TLR7/TLR9 responses to nucleic acids promote anti-RNA/DNA antibody responses in SLE